Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: A systematic review and meta-analysis.

Identifieur interne : 000234 ( Main/Exploration ); précédent : 000233; suivant : 000235

QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: A systematic review and meta-analysis.

Auteurs : Carlos Diaz-Arocutipa [Pérou] ; Ana Bra Ez-Condorena [Pérou] ; Adrian V. Hernandez [Pérou, États-Unis]

Source :

RBID : pubmed:33772933

Descripteurs français

English descriptors

Abstract

PURPOSE

Hydroxychloroquine, chloroquine, azithromycin, and lopinavir/ritonavir are drugs that were used for the treatment of coronavirus disease 2019 (COVID-19) during the early pandemic period. It is well-known that these agents can prolong the QTc interval and potentially induce Torsades de Pointes (TdP). We aim to assess the prevalence and risk of QTc prolongation and arrhythmic events in COVID-19 patients treated with these drugs.

METHODS

We searched electronic databases from inception to September 30, 2020 for studies reporting peak QTc ≥500 ms, peak QTc change ≥60 ms, peak QTc interval, peak change of QTc interval, ventricular arrhythmias, TdP, sudden cardiac death, or atrioventricular block (AVB). All meta-analyses were conducted using a random-effects model.

RESULTS

Forty-seven studies (three case series, 35 cohorts, and nine randomized controlled trials [RCTs]) involving 13 087 patients were included. The pooled prevalence of peak QTc ≥500 ms was 9% (95% confidence interval [95%CI], 3%-18%) and 8% (95%CI, 3%-14%) in patients who received hydroxychloroquine/chloroquine alone or in combination with azithromycin, respectively. Likewise, the use of hydroxychloroquine (risk ratio [RR], 2.68; 95%CI, 1.56-4.60) and hydroxychloroquine + azithromycin (RR, 3.28; 95%CI, 1.16-9.30) was associated with an increased risk of QTc prolongation compared to no treatment. Ventricular arrhythmias, TdP, sudden cardiac death, and AVB were reported in <1% of patients across treatment groups. The only two studies that reported individual data of lopinavir/ritonavir found no cases of QTc prolongation.

CONCLUSIONS

COVID-19 patients treated with hydroxychloroquine/chloroquine with or without azithromycin had a relatively high prevalence and risk of QTc prolongation. However, the prevalence of arrhythmic events was very low, probably due to underreporting. The limited information about lopinavir/ritonavir showed that it does not prolong the QTc interval.


DOI: 10.1002/pds.5234
PubMed: 33772933


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: A systematic review and meta-analysis.</title>
<author>
<name sortKey="Diaz Arocutipa, Carlos" sort="Diaz Arocutipa, Carlos" uniqKey="Diaz Arocutipa C" first="Carlos" last="Diaz-Arocutipa">Carlos Diaz-Arocutipa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Programa de Atención Domiciliaria - EsSalud, Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Programa de Atención Domiciliaria - EsSalud, Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS), Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS), Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bra Ez Condorena, Ana" sort="Bra Ez Condorena, Ana" uniqKey="Bra Ez Condorena A" first="Ana" last="Bra Ez-Condorena">Ana Bra Ez-Condorena</name>
<affiliation wicri:level="1">
<nlm:affiliation>Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS), Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS), Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Facultad de Medicina de San Fernando, Universidad Nacional Mayor de San Marcos, Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Facultad de Medicina de San Fernando, Universidad Nacional Mayor de San Marcos, Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hernandez, Adrian V" sort="Hernandez, Adrian V" uniqKey="Hernandez A" first="Adrian V" last="Hernandez">Adrian V. Hernandez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, University of Connecticut School of Pharmacy, Storrs, Connecticut, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, University of Connecticut School of Pharmacy, Storrs, Connecticut</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33772933</idno>
<idno type="pmid">33772933</idno>
<idno type="doi">10.1002/pds.5234</idno>
<idno type="wicri:Area/Main/Corpus">000181</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000181</idno>
<idno type="wicri:Area/Main/Curation">000181</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000181</idno>
<idno type="wicri:Area/Main/Exploration">000181</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: A systematic review and meta-analysis.</title>
<author>
<name sortKey="Diaz Arocutipa, Carlos" sort="Diaz Arocutipa, Carlos" uniqKey="Diaz Arocutipa C" first="Carlos" last="Diaz-Arocutipa">Carlos Diaz-Arocutipa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Programa de Atención Domiciliaria - EsSalud, Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Programa de Atención Domiciliaria - EsSalud, Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS), Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS), Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bra Ez Condorena, Ana" sort="Bra Ez Condorena, Ana" uniqKey="Bra Ez Condorena A" first="Ana" last="Bra Ez-Condorena">Ana Bra Ez-Condorena</name>
<affiliation wicri:level="1">
<nlm:affiliation>Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS), Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS), Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Facultad de Medicina de San Fernando, Universidad Nacional Mayor de San Marcos, Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Facultad de Medicina de San Fernando, Universidad Nacional Mayor de San Marcos, Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hernandez, Adrian V" sort="Hernandez, Adrian V" uniqKey="Hernandez A" first="Adrian V" last="Hernandez">Adrian V. Hernandez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru.</nlm:affiliation>
<country xml:lang="fr">Pérou</country>
<wicri:regionArea>Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima</wicri:regionArea>
<wicri:noRegion>Lima</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, University of Connecticut School of Pharmacy, Storrs, Connecticut, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, University of Connecticut School of Pharmacy, Storrs, Connecticut</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pharmacoepidemiology and drug safety</title>
<idno type="eISSN">1099-1557</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Azithromycin (administration & dosage)</term>
<term>Azithromycin (adverse effects)</term>
<term>COVID-19 (diagnosis)</term>
<term>COVID-19 (drug therapy)</term>
<term>COVID-19 (epidemiology)</term>
<term>Chloroquine (administration & dosage)</term>
<term>Chloroquine (adverse effects)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (administration & dosage)</term>
<term>Hydroxychloroquine (adverse effects)</term>
<term>Long QT Syndrome (chemically induced)</term>
<term>Long QT Syndrome (diagnosis)</term>
<term>Long QT Syndrome (epidemiology)</term>
<term>Lopinavir (administration & dosage)</term>
<term>Lopinavir (adverse effects)</term>
<term>Observational Studies as Topic (methods)</term>
<term>Ritonavir (administration & dosage)</term>
<term>Ritonavir (adverse effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azithromycine (administration et posologie)</term>
<term>Azithromycine (effets indésirables)</term>
<term>Chloroquine (administration et posologie)</term>
<term>Chloroquine (effets indésirables)</term>
<term>Humains (MeSH)</term>
<term>Hydroxychloroquine (administration et posologie)</term>
<term>Hydroxychloroquine (effets indésirables)</term>
<term>Lopinavir (administration et posologie)</term>
<term>Lopinavir (effets indésirables)</term>
<term>Ritonavir (administration et posologie)</term>
<term>Ritonavir (effets indésirables)</term>
<term>Syndrome du QT long (diagnostic)</term>
<term>Syndrome du QT long (induit chimiquement)</term>
<term>Syndrome du QT long (épidémiologie)</term>
<term>Études observationnelles comme sujet (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Azithromycin</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
<term>Lopinavir</term>
<term>Ritonavir</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Azithromycin</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
<term>Lopinavir</term>
<term>Ritonavir</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Azithromycine</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
<term>Lopinavir</term>
<term>Ritonavir</term>
</keywords>
<keywords scheme="MESH" qualifier="chemically induced" xml:lang="en">
<term>Long QT Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>COVID-19</term>
<term>Long QT Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic" xml:lang="fr">
<term>Syndrome du QT long</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Azithromycine</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
<term>Lopinavir</term>
<term>Ritonavir</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>COVID-19</term>
<term>Long QT Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="induit chimiquement" xml:lang="fr">
<term>Syndrome du QT long</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Observational Studies as Topic</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Études observationnelles comme sujet</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Syndrome du QT long</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>PURPOSE</b>
</p>
<p>Hydroxychloroquine, chloroquine, azithromycin, and lopinavir/ritonavir are drugs that were used for the treatment of coronavirus disease 2019 (COVID-19) during the early pandemic period. It is well-known that these agents can prolong the QTc interval and potentially induce Torsades de Pointes (TdP). We aim to assess the prevalence and risk of QTc prolongation and arrhythmic events in COVID-19 patients treated with these drugs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>We searched electronic databases from inception to September 30, 2020 for studies reporting peak QTc ≥500 ms, peak QTc change ≥60 ms, peak QTc interval, peak change of QTc interval, ventricular arrhythmias, TdP, sudden cardiac death, or atrioventricular block (AVB). All meta-analyses were conducted using a random-effects model.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Forty-seven studies (three case series, 35 cohorts, and nine randomized controlled trials [RCTs]) involving 13 087 patients were included. The pooled prevalence of peak QTc ≥500 ms was 9% (95% confidence interval [95%CI], 3%-18%) and 8% (95%CI, 3%-14%) in patients who received hydroxychloroquine/chloroquine alone or in combination with azithromycin, respectively. Likewise, the use of hydroxychloroquine (risk ratio [RR], 2.68; 95%CI, 1.56-4.60) and hydroxychloroquine + azithromycin (RR, 3.28; 95%CI, 1.16-9.30) was associated with an increased risk of QTc prolongation compared to no treatment. Ventricular arrhythmias, TdP, sudden cardiac death, and AVB were reported in <1% of patients across treatment groups. The only two studies that reported individual data of lopinavir/ritonavir found no cases of QTc prolongation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>COVID-19 patients treated with hydroxychloroquine/chloroquine with or without azithromycin had a relatively high prevalence and risk of QTc prolongation. However, the prevalence of arrhythmic events was very low, probably due to underreporting. The limited information about lopinavir/ritonavir showed that it does not prolong the QTc interval.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33772933</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>05</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1099-1557</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2021</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Pharmacoepidemiology and drug safety</Title>
<ISOAbbreviation>Pharmacoepidemiol Drug Saf</ISOAbbreviation>
</Journal>
<ArticleTitle>QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: A systematic review and meta-analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>694-706</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/pds.5234</ELocationID>
<Abstract>
<AbstractText Label="PURPOSE">Hydroxychloroquine, chloroquine, azithromycin, and lopinavir/ritonavir are drugs that were used for the treatment of coronavirus disease 2019 (COVID-19) during the early pandemic period. It is well-known that these agents can prolong the QTc interval and potentially induce Torsades de Pointes (TdP). We aim to assess the prevalence and risk of QTc prolongation and arrhythmic events in COVID-19 patients treated with these drugs.</AbstractText>
<AbstractText Label="METHODS">We searched electronic databases from inception to September 30, 2020 for studies reporting peak QTc ≥500 ms, peak QTc change ≥60 ms, peak QTc interval, peak change of QTc interval, ventricular arrhythmias, TdP, sudden cardiac death, or atrioventricular block (AVB). All meta-analyses were conducted using a random-effects model.</AbstractText>
<AbstractText Label="RESULTS">Forty-seven studies (three case series, 35 cohorts, and nine randomized controlled trials [RCTs]) involving 13 087 patients were included. The pooled prevalence of peak QTc ≥500 ms was 9% (95% confidence interval [95%CI], 3%-18%) and 8% (95%CI, 3%-14%) in patients who received hydroxychloroquine/chloroquine alone or in combination with azithromycin, respectively. Likewise, the use of hydroxychloroquine (risk ratio [RR], 2.68; 95%CI, 1.56-4.60) and hydroxychloroquine + azithromycin (RR, 3.28; 95%CI, 1.16-9.30) was associated with an increased risk of QTc prolongation compared to no treatment. Ventricular arrhythmias, TdP, sudden cardiac death, and AVB were reported in <1% of patients across treatment groups. The only two studies that reported individual data of lopinavir/ritonavir found no cases of QTc prolongation.</AbstractText>
<AbstractText Label="CONCLUSIONS">COVID-19 patients treated with hydroxychloroquine/chloroquine with or without azithromycin had a relatively high prevalence and risk of QTc prolongation. However, the prevalence of arrhythmic events was very low, probably due to underreporting. The limited information about lopinavir/ritonavir showed that it does not prolong the QTc interval.</AbstractText>
<CopyrightInformation>© 2021 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Diaz-Arocutipa</LastName>
<ForeName>Carlos</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-5101-2832</Identifier>
<AffiliationInfo>
<Affiliation>Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Programa de Atención Domiciliaria - EsSalud, Lima, Peru.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS), Lima, Peru.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brañez-Condorena</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS), Lima, Peru.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Facultad de Medicina de San Fernando, Universidad Nacional Mayor de San Marcos, Lima, Peru.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hernandez</LastName>
<ForeName>Adrian V</ForeName>
<Initials>AV</Initials>
<AffiliationInfo>
<Affiliation>Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, University of Connecticut School of Pharmacy, Storrs, Connecticut, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>None.</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D017418">Meta-Analysis</PublicationType>
<PublicationType UI="D000078182">Systematic Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>04</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Pharmacoepidemiol Drug Saf</MedlineTA>
<NlmUniqueID>9208369</NlmUniqueID>
<ISSNLinking>1053-8569</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>2494G1JF75</RegistryNumber>
<NameOfSubstance UI="D061466">Lopinavir</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>83905-01-5</RegistryNumber>
<NameOfSubstance UI="D017963">Azithromycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O3J8G9O825</RegistryNumber>
<NameOfSubstance UI="D019438">Ritonavir</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017963" MajorTopicYN="N">Azithromycin</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008133" MajorTopicYN="N">Long QT Syndrome</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="Y">chemically induced</QualifierName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061466" MajorTopicYN="N">Lopinavir</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064887" MajorTopicYN="N">Observational Studies as Topic</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019438" MajorTopicYN="N">Ritonavir</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">QTc interval</Keyword>
<Keyword MajorTopicYN="Y">Torsades de Pointes</Keyword>
<Keyword MajorTopicYN="Y">sudden cardiac death</Keyword>
<Keyword MajorTopicYN="Y">ventricular arrhythmias</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="revised">
<Year>2021</Year>
<Month>03</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2021</Year>
<Month>03</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>17</Hour>
<Minute>35</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33772933</ArticleId>
<ArticleId IdType="doi">10.1002/pds.5234</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>COVID-19 Dashboard by the Center for Systems Science and Engineering at Johns Hopkins University. https://coronavirus.jhu.edu/map.html. Accessed September 30, 2020.</Citation>
</Reference>
<Reference>
<Citation>Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. https://doi.org/10.1038/s41586-020-2012-7.</Citation>
</Reference>
<Reference>
<Citation>Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19 - preliminary report. N Engl J Med. 2020;384:693-704. https://doi.org/10.1056/NEJMoa2021436.</Citation>
</Reference>
<Reference>
<Citation>Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - Final Report. N Engl J Med. 2020;383(19):1813-1826. https://doi.org/10.1056/NEJMoa2007764.</Citation>
</Reference>
<Reference>
<Citation>Siemieniuk RA, Bartoszko JJ, Ge L, et al. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ. 2020;370:m2980. https://doi.org/10.1136/bmj.m2980.</Citation>
</Reference>
<Reference>
<Citation>Jones CW, Woodford AL, Platts-Mills TF. Characteristics of COVID-19 clinical trials registered with ClinicalTrials.gov: cross-sectional analysis. BMJ Open. 2020;10(9):e041276. https://doi.org/10.1136/bmjopen-2020-041276.</Citation>
</Reference>
<Reference>
<Citation>Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery. 2020;6:16. https://doi.org/10.1038/s41421-020-0156-0.</Citation>
</Reference>
<Reference>
<Citation>Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271. https://doi.org/10.1038/s41422-020-0282-0.</Citation>
</Reference>
<Reference>
<Citation>Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56:105949. https://doi.org/10.1016/j.ijantimicag.2020.105949.</Citation>
</Reference>
<Reference>
<Citation>Request for Emergency Use Authorization For Use of Chloroquine Phosphate or Hydroxychloroquine Sulfate Supplied From the Strategic National Stockpile for Treatment of 2019 Coronavirus Disease. https://www.fda.gov/media/136534/download. Accessed June 06, 2020.</Citation>
</Reference>
<Reference>
<Citation>Letter revoking EUA for chloroquine phosphate and hydroxychloroquine sulfate. https://www.fda.gov/media/138945/download. Accessed June 20, 2020.</Citation>
</Reference>
<Reference>
<Citation>Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment (7th edition). http://kjfy.meetingchina.org/msite/news/show/cn/3337.html. Accessed June 06, 2020.</Citation>
</Reference>
<Reference>
<Citation>Orientações do ministério da saúde para manuseio medicamentoso precoce de pacientes com diagnóstico da COVID-19. https://coronavirus.saude.gov.br/. Accessed June 20, 2020.</Citation>
</Reference>
<Reference>
<Citation>Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323(18):1824-1836. https://doi.org/10.1001/jama.2020.6019.</Citation>
</Reference>
<Reference>
<Citation>Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-256. https://doi.org/10.1136/thorax.2003.012658.</Citation>
</Reference>
<Reference>
<Citation>Giudicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ. Urgent guidance for navigating and circumventing the QTc-prolonging and torsadogenic potential of possible pharmacotherapies for coronavirus disease 19 (COVID-19). Mayo Clin Proc. 2020;95(6):1213-1221. https://doi.org/10.1016/j.mayocp.2020.03.024.</Citation>
</Reference>
<Reference>
<Citation>Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. https://doi.org/10.1136/bmj.b2535.</Citation>
</Reference>
<Reference>
<Citation>Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis. http://www.ohri.ca/programs/clinical_epidemiology/oxfordasp. Accessed May 7, 2020.</Citation>
</Reference>
<Reference>
<Citation>Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. https://doi.org/10.1136/bmj.l4898.</Citation>
</Reference>
<Reference>
<Citation>Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. https://doi.org/10.1186/1471-2288-14-135.</Citation>
</Reference>
<Reference>
<Citation>Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-634. https://doi.org/10.1136/bmj.315.7109.629.</Citation>
</Reference>
<Reference>
<Citation>Barbosa J, Kaitis D, Ryan F, Kim L, Xihui L. Clinical outcomes of hydroxychloroquine in hospitalized patients with COVID-19: a quasi-randomized comparative study. Biblio 2020. https://bibliovid.org/clinical-outcomes-ofhydroxychloroquine-in-hospitalized-patients-with-covid-19-a-302. Accessed June 28, 2020.</Citation>
</Reference>
<Reference>
<Citation>Bessière F, Roccia H, Delinière A, et al. Assessment of QT intervals in a case series of patients with coronavirus disease 2019 (COVID-19) infection treated with hydroxychloroquine alone or in combination with azithromycin in an intensive care unit. JAMA Cardiol. 2020;5(9):1067-1069. https://doi.org/10.1001/jamacardio.2020.1787.</Citation>
</Reference>
<Reference>
<Citation>Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open. 2020;3(4):e208857. https://doi.org/10.1001/jamanetworkopen.2020.8857.</Citation>
</Reference>
<Reference>
<Citation>Bun S-S, Taghji P, Courjon J, et al. QT interval prolongation under hydroxychloroquine/ azithromycin association for inpatients with SARS-CoV-2 lower respiratory tract infection. Clin Pharmacol Ther. 2020;108(5):1090-1097. https://doi.org/10.1002/cpt.968.</Citation>
</Reference>
<Reference>
<Citation>Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-1799. https://doi.org/10.1056/NEJMoa2001282.</Citation>
</Reference>
<Reference>
<Citation>Chang D, Saleh M, Gabriels J, et al. Inpatient use of ambulatory telemetry monitors for COVID-19 patients treated with hydroxychloroquine and/or azithromycin. J Am Coll Cardiol. 2020;75(23):2992-2993. https://doi.org/10.1016/j.jacc.2020.04.032.</Citation>
</Reference>
<Reference>
<Citation>Chen C-P, Lin Y-C, Chen T-C, et al. A Multicenter, Randomized, Open-label, Controlled Trial to Evaluate the Efficacy and Tolerability of Hydroxychloroquine and a Retrospective Study in Adult Patients with Mild to Moderate Coronavirus Disease 2019 (COVID-19). medRxiv; 2020. https://doi.org/10.1101/2020.07.08.20148841.</Citation>
</Reference>
<Reference>
<Citation>Chorin E, Dai M, Shulman E, et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med. 2020;26(6):808-809. https://doi.org/10.1038/s41591-020-0888-2.</Citation>
</Reference>
<Reference>
<Citation>Chorin E, Wadhwani L, Magnani S, et al. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart Rhythm. 2020;17(9):1425-1433. https://doi.org/10.1016/j.hrthm.2020.05.014.</Citation>
</Reference>
<Reference>
<Citation>Cipriani A, Zorzi A, Ceccato D, et al. Arrhythmic profile and 24-hour QT interval variability in COVID-19 patients treated with hydroxychloroquine and azithromycin. Int J Cardiol. 2020;316:280-284. https://doi.org/10.1016/j.ijcard.2020.05.036.</Citation>
</Reference>
<Reference>
<Citation>Horby P, Mafham M, Linsell L, et al. Effect of Hydroxychloroquine in Hospitalized Patients with COVID-19: Preliminary Results from a Multi-centre, Randomized, Controlled Trial. medRxiv; 2020. https://doi.org/10.1101/2020.07.15.20151852.</Citation>
</Reference>
<Reference>
<Citation>Hsia B, Greige N, Quiroz JA, et al. QT prolongation in a diverse, urban population of COVID-19 patients treated with hydroxychloroquine, chloroquine, or azithromycin. J Interv Card Electrophysiol. 2020;59(2):337-345. https://doi.org/10.1007/s10840-020-00822-x.</Citation>
</Reference>
<Reference>
<Citation>Ip A, Berry DA, Hansen E, et al. Hydroxychloroquine and Tocilizumab Therapy in COVID-19 Patients - An Observational Study. medRxiv; 2020. https://doi.org/10.1101/2020.05.21.20109207.</Citation>
</Reference>
<Reference>
<Citation>Jain S, Workman V, Ganeshan R, et al. Enhanced electrocardiographic monitoring of patients with Coronavirus Disease 2019. Heart Rhythm. 2020;17(9):1417-1422. https://doi.org/10.1016/j.hrthm.2020.04.047.</Citation>
</Reference>
<Reference>
<Citation>Lagier J-C, Million M, Gautret P, et al. Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: a retrospective analysis. Travel Med Infect Dis. 2020;101791. https://doi.org/10.1016/j.tmaid.2020.101791.</Citation>
</Reference>
<Reference>
<Citation>Lecronier M, Beurton A, Burrel S, et al. Comparison of hydroxychloroquine, lopinavir/ritonavir, and standard of care in critically ill patients with SARS-CoV-2 pneumonia: an opportunistic retrospective analysis. Crit Care. 2020;24(1):418. https://doi.org/10.1186/s13054-020-03117-9.</Citation>
</Reference>
<Reference>
<Citation>Mahévas M, Tran VT, Roumier M, et al. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ. 2020;369:m1844. https://doi.org/10.1136/bmj.m1844.</Citation>
</Reference>
<Reference>
<Citation>Maraj I, Hummel JP, Taoutel R, et al. Incidence and determinants of QT interval prolongation in COVID-19 patients treated with hydroxychloroquine and azithromycin. J Cardiovasc Electrophysiol. 2020;31(8):1904-1907. https://doi.org/10.1111/jce.14594.</Citation>
</Reference>
<Reference>
<Citation>Mazzanti A, Briani M, Kukavica D, et al. Association of hydroxychloroquine with QTc interval in patients with COVID-19. Circulation. 2020;142(5):513-515. https://doi.org/10.1161/circulationaha.120.048476.</Citation>
</Reference>
<Reference>
<Citation>Mercuro NJ, Yen CF, Shim DJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(9):1036-1041. https://doi.org/10.1001/jamacardio.2020.1834.</Citation>
</Reference>
<Reference>
<Citation>Million M, Lagier JC, Gautret P, et al. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: a retrospective analysis of 1061 cases in Marseille, France. Travel Med Infect Dis. 2020;101738. https://doi.org/10.1016/j.tmaid.2020.101738.</Citation>
</Reference>
<Reference>
<Citation>Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 2020;50(4):384. https://doi.org/10.1016/j.medmal.2020.03.006.</Citation>
</Reference>
<Reference>
<Citation>Paccoud O, Tubach F, Baptiste A, et al. Compassionate use of hydroxychloroquine in clinical practice for patients with mild to severe Covid-19 in a French university hospital. Clin Infect Dis. 2020;ciaa791. https://doi.org/10.1093/cid/ciaa791.</Citation>
</Reference>
<Reference>
<Citation>Peng HC, Hussin N, Nalliah S, et al. Experience of short-term hydroxychloroquine and azithromycin in COVID-19 patients and effect on QTc trend. J Infect. 2020;81(2):e117-e119. https://doi.org/10.1016/j.jinf.2020.05.058.</Citation>
</Reference>
<Reference>
<Citation>Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: initial report from the US epicenter. Am J Transplant. 2020;20(7):1800-1808. https://doi.org/10.1111/ajt.15941.</Citation>
</Reference>
<Reference>
<Citation>Pothen L, Yildiz H, De Greef J, et al. Safety use of hydroxychloroquine and its combination with azithromycin in the context of Sars-CoV-2 outbreak: clinical experience in a Belgian tertiary center. Travel Med Infect Dis. 2020;36:101788. https://doi.org/10.1016/j.tmaid.2020.101788.</Citation>
</Reference>
<Reference>
<Citation>Ramireddy A, Chugh H, Reinier K, et al. Experience with hydroxychloroquine and azithromycin in the COVID-19 pandemic: implications for QT interval monitoring. J Am Heart Assoc. 2020;9(12):e017144. https://doi.org/10.1161/jaha.120.017144.</Citation>
</Reference>
<Reference>
<Citation>Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA. 2020;323(24):2493-2502. https://doi.org/10.1001/jama.2020.8630.</Citation>
</Reference>
<Reference>
<Citation>Saleh M, Gabriels J, Chang D, et al. Effect of chloroquine, hydroxychloroquine and azithromycin on the corrected QT interval in patients with SARS-CoV-2 infection. Circ Arrhythm Electrophysiol. 2020;13(6):e008662. https://doi.org/10.1161/circep.120.008662.</Citation>
</Reference>
<Reference>
<Citation>Sinkeler FS, Berger FA, Muntinga HJ, Jansen M. The risk of QTc-interval prolongation in COVID-19 patients treated with chloroquine. Neth Heart J. 2020;28:1-6. https://doi.org/10.1007/s12471-020-01462-6.</Citation>
</Reference>
<Reference>
<Citation>Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann Intern Med. 2020;173(8):623-631. https://doi.org/10.7326/M20-4207.</Citation>
</Reference>
<Reference>
<Citation>Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849. https://doi.org/10.1136/bmj.m1849.</Citation>
</Reference>
<Reference>
<Citation>Van den Broek MPH, Möhlmann JE, Abeln BGS, Liebregts M, Van Dijk VF, Van de Garde EMW. Chloroquine-induced QTc prolongation in COVID-19 patients. Neth Heart J. 2020;28:406-409. https://doi.org/10.1007/s12471-020-01429-7.</Citation>
</Reference>
<Reference>
<Citation>Bakhshaliyev N, Uluganyan M, Enhos A, Karacop E, Ozdemir R. The effect of 5-day course of hydroxychloroquine and azithromycin combination on QT interval in non-ICU COVID19(+) patients. J Electrocardiol. 2020;62:59-64. https://doi.org/10.1016/j.jelectrocard.2020.08.008.</Citation>
</Reference>
<Reference>
<Citation>Bernardini A, Ciconte G, Negro G, et al. Assessing QT interval in COVID-19 patients: safety of hydroxychloroquine-azithromycin combination regimen. Int J Cardiol. 2020;324:242-248. https://doi.org/10.1016/j.ijcard.2020.09.038.</Citation>
</Reference>
<Reference>
<Citation>Beyls C, Martin N, Hermida A, Abou-Arab O, Mahjoub Y. Lopinavir-ritonavir treatment for COVID-19 infection in intensive care unit: risk of bradycardia. Circ Arrhythm Electrophysiol. 2020;13(8):e008798. https://doi.org/10.1161/circep.120.008798.</Citation>
</Reference>
<Reference>
<Citation>Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020;383(6):517-525. https://doi.org/10.1056/NEJMoa2016638.</Citation>
</Reference>
<Reference>
<Citation>Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N Engl J Med. 2020;383(21):2041-2052. https://doi.org/10.1056/NEJMoa2019014.</Citation>
</Reference>
<Reference>
<Citation>Farré N, Mojón D, Llagostera M, et al. Prolonged QT interval in SARS-CoV-2 infection: prevalence and prognosis. J Clin Med. 2020;9(9):2712. https://doi.org/10.3390/jcm9092712.</Citation>
</Reference>
<Reference>
<Citation>Furtado RHM, Berwanger O, Fonseca HA, et al. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): a randomised clinical trial. Lancet. 2020;396(10256):959-967. https://doi.org/10.1016/s0140-6736(20)31862-6.</Citation>
</Reference>
<Reference>
<Citation>Giaime P, Guenoun M, Pedinielli N, et al. Hydroxychloroquine and azithromycin tolerance in haemodialysis patients during COVID-19 infection. Nephrol Dial Transplant. 2020;35(8):1346-1353. https://doi.org/10.1093/ndt/gfaa191.</Citation>
</Reference>
<Reference>
<Citation>Kelly M, O'Connor R, Townsend L, et al. Clinical outcomes and adverse events in patients hospitalised with COVID-19, treated with off-label hydroxychloroquine and azithromycin. Br J Clin Pharmacol. 2020;87:1150-1154. https://doi.org/10.1111/bcp.14482.</Citation>
</Reference>
<Reference>
<Citation>Ouarradi AE, Abdeladim S, Oualim S, et al. Hydroxychloroquine and azithromycin as a treatment of Covid-19: electrocardiogram variability. J Saudi Heart Assoc. 2020;32(3):350-357.</Citation>
</Reference>
<Reference>
<Citation>Padilla S, Telenti G, Guillén L, et al. Predictive factors for cardiac conduction abnormalities with hydroxychloroquine-containing combinations for COVID-19. Int J Antimicrob Agents. 2020;56(4):106142. https://doi.org/10.1016/j.ijantimicag.2020.106142.</Citation>
</Reference>
<Reference>
<Citation>Sekhavati E, Jafari F, SeyedAlinaghi S, et al. Safety and effectiveness of azithromycin in patients with COVID-19: an open-label randomised trial. Int J Antimicrob Agents. 2020;56:106143. https://doi.org/10.1016/j.ijantimicag.2020.106143.</Citation>
</Reference>
<Reference>
<Citation>Sridhar AR, Chatterjee NA, Saour B, et al. QT interval and arrhythmic safety of hydroxychloroquine monotherapy in coronavirus disease 2019. Heart Rhythm. 2020;1(3):167-172. https://doi.org/10.1016/j.hroo.2020.06.002.</Citation>
</Reference>
<Reference>
<Citation>Torres González N, Álvarez Acosta L, Valdivia Miranda D, et al. QT interval measurement with portable device during COVID-19 outbreak. Int J Cardiol Heart Vasc. 2020;30:100644. https://doi.org/10.1016/j.ijcha.2020.100644.</Citation>
</Reference>
<Reference>
<Citation>Hernandez AV, Roman YM, Pasupuleti V, Barboza JJ, White CM. Update alert 2: hydroxychloroquine or chloroquine for the treatment or prophylaxis of COVID-19. Ann Intern Med. 2020;173:W128-W129. https://doi.org/10.7326/l20-1054.</Citation>
</Reference>
<Reference>
<Citation>Yu H, Zhang L, Liu J, et al. Acquired long QT syndrome in hospitalized patients. Heart Rhythm. 2017;14(7):974-978. https://doi.org/10.1016/j.hrthm.2017.03.014.</Citation>
</Reference>
<Reference>
<Citation>Drew BJ, Ackerman MJ, Funk M, et al. Prevention of torsade de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J Am Coll Cardiol. 2010;55(9):934-947. https://doi.org/10.1016/j.jacc.2010.01.001.</Citation>
</Reference>
<Reference>
<Citation>Bertini M, Ferrari R, Guardigli G, et al. Electrocardiographic features of 431 consecutive, critically ill COVID-19 patients: an insight into the mechanisms of cardiac involvement. Europace. 2020;22:1848-1854. https://doi.org/10.1093/europace/euaa258.</Citation>
</Reference>
<Reference>
<Citation>Singh AP, Tousif S, Umbarkar P, Lal H. A pharmacovigilance study of hydroxychloroquine cardiac safety profile: potential implication in COVID-19 mitigation. J Clin Med. 2020;9(6). https://doi.org/10.3390/jcm9061867.</Citation>
</Reference>
<Reference>
<Citation>Pavri BB, Kloo J, Farzad D, Riley JM. Behavior of the PR interval with increasing heart rate in patients with COVID-19. Heart Rhythm. 2020;17(9):1434-1438. https://doi.org/10.1016/j.hrthm.2020.06.009.</Citation>
</Reference>
<Reference>
<Citation>No clinical benefit from use of lopinavir-ritonavir in hospitalised COVID-19 patients studied in RECOVERY. https://www.recoverytrial.net/news/no-clinical-benefit-from-use-of-lopinavir-ritonavir-in-hospitalised-covid-19-patients-studied-in-recovery. Accessed June 30, 2020.</Citation>
</Reference>
<Reference>
<Citation>Liu W, Zhou P, Chen K, et al. Efficacy and safety of antiviral treatment for COVID-19 from evidence in studies of SARSCoV-2 and other acute viral infections: a systematic review and meta-analysis. CMAJ. 2020;192(27):E734-E744. https://doi.org/10.1503/cmaj.200647.</Citation>
</Reference>
<Reference>
<Citation>ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic. https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID-19-Guidance#p09. Accessed September 30, 2020.</Citation>
</Reference>
<Reference>
<Citation>Lakkireddy DR, Chung MK, Gopinathannair R, et al. Guidance for cardiac electrophysiology during the COVID-19 pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association. Heart Rhythm. 2020;17(9):e233-e241. https://doi.org/10.1016/j.hrthm.2020.03.028.</Citation>
</Reference>
<Reference>
<Citation>Sapp JL, Alqarawi W, MacIntyre CJ, et al. Guidance on minimizing risk of drug-induced ventricular arrhythmia during treatment of COVID-19: a statement from the Canadian Heart Rhythm Society. Can J Cardiol. 2020;36(6):948-951. https://doi.org/10.1016/j.cjca.2020.04.003.</Citation>
</Reference>
<Reference>
<Citation>Jankelson L, Karam G, Becker ML, Chinitz LA, Tsai M-C. QT prolongation, Torsades de Pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: a systematic review. Heart Rhythm. 2020;17(9):1472-1479. https://doi.org/10.1016/j.hrthm.2020.05.008.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pérou</li>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
</region>
</list>
<tree>
<country name="Pérou">
<noRegion>
<name sortKey="Diaz Arocutipa, Carlos" sort="Diaz Arocutipa, Carlos" uniqKey="Diaz Arocutipa C" first="Carlos" last="Diaz-Arocutipa">Carlos Diaz-Arocutipa</name>
</noRegion>
<name sortKey="Bra Ez Condorena, Ana" sort="Bra Ez Condorena, Ana" uniqKey="Bra Ez Condorena A" first="Ana" last="Bra Ez-Condorena">Ana Bra Ez-Condorena</name>
<name sortKey="Bra Ez Condorena, Ana" sort="Bra Ez Condorena, Ana" uniqKey="Bra Ez Condorena A" first="Ana" last="Bra Ez-Condorena">Ana Bra Ez-Condorena</name>
<name sortKey="Diaz Arocutipa, Carlos" sort="Diaz Arocutipa, Carlos" uniqKey="Diaz Arocutipa C" first="Carlos" last="Diaz-Arocutipa">Carlos Diaz-Arocutipa</name>
<name sortKey="Diaz Arocutipa, Carlos" sort="Diaz Arocutipa, Carlos" uniqKey="Diaz Arocutipa C" first="Carlos" last="Diaz-Arocutipa">Carlos Diaz-Arocutipa</name>
<name sortKey="Hernandez, Adrian V" sort="Hernandez, Adrian V" uniqKey="Hernandez A" first="Adrian V" last="Hernandez">Adrian V. Hernandez</name>
</country>
<country name="États-Unis">
<region name="Connecticut">
<name sortKey="Hernandez, Adrian V" sort="Hernandez, Adrian V" uniqKey="Hernandez A" first="Adrian V" last="Hernandez">Adrian V. Hernandez</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000234 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000234 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33772933
   |texte=   QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: A systematic review and meta-analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33772933" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021